
Data Analysis in Python Documentation
Release 0.1

Stanislav Khrapov

March 04, 2017

Contents

1 Introduction 1
1.1 Resources . 1
1.2 Why Python? . 1
1.3 How to start using Python . 1
1.4 Essential libraries . 2
1.5 Data sources . 2

2 Python basics 3
2.1 Your first program . 3
2.2 Native Data Types . 5
2.3 Indexing . 10
2.4 Control flow . 12
2.5 Functions . 16
2.6 Classes . 21
2.7 Modules and Packages . 21
2.8 Documenenting your code . 23

3 NumPy. Manipulations with numerical data 25
3.1 Array creation . 25
3.2 Indexing, Slicing . 27
3.3 Copies and Views . 29
3.4 Array manipulations . 30
3.5 Reductions . 33

4 Pandas. Data processing 35
4.1 Data structures . 36
4.2 Basic functionality . 42
4.3 Function application . 50
4.4 Reindexing and altering labels . 53
4.5 Sorting by index and value . 58
4.6 Indexing and selecting data . 60

5 Data I/O 69
5.1 Data import . 69
5.2 Data export . 70

6 Data crunching examples 71

7 Data visualization 73

i

7.1 Matplotlib . 73
7.2 Seaborn . 73
7.3 Bokeh . 73
7.4 Plotly . 73

8 What’s missing 75

ii

CHAPTER 1

Introduction

Resources

These notes are a compilation of the following original resources for the purposes of the class I teach:

• Python 3 documentation

• Python Scientific Lecture Notes

• Dive into Python 3

• Python for Econometrics

• High Performance Scientific Computing

• DataJoy documentation

• Learn Python The Hard Way

• An introduction to Numpy and Scipy

Why Python?

• 10 Reasons Python Rocks for Research (And a Few Reasons it Doesn’t)

• Choosing R or Python for data analysis? An infographic

• Data Science Programming: Python vs R

• Python vs Matlab

• Infographic: Quick Guide on SAS vs R vs Python

How to start using Python

Online code editors which allow to bypass any difficulties connected with installation of Python on your own machine:

• Wakari.io (seems to be at full capacity very frequently)

For local installation it is recommended to download Anaconda distribution. Anaconda includes my favorite IDE,
Spyder.

1

https://docs.python.org/3/
https://scipy-lectures.github.io/
http://www.diveintopython3.net/
http://www.kevinsheppard.com/Python_for_Econometrics
https://faculty.washington.edu/rjl/classes/am583s2014/notes/index.html
https://www.getdatajoy.com/learn/
http://learnpythonthehardway.org/book/
http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf
https://www.stat.washington.edu/~hoytak/blog/whypython.html
http://blog.datacamp.com/r-or-python-for-data-analysis/
http://www.kdnuggets.com/2015/10/data-science-programming-python-vs-r.html
http://www.pyzo.org/python_vs_matlab.html
http://www.analyticsvidhya.com/blog/2015/05/infographic-quick-guide-sas-python/
https://www.wakari.io
https://store.continuum.io/cshop/anaconda
https://pythonhosted.org/spyder/

Data Analysis in Python Documentation, Release 0.1

Essential libraries

• Pandas - data analysis library

• Numpy - fundamental package for scientific computing

• SciPy - numerical routines

• StatsModels - econometrics tools

• Matplotlib - plotting library

• Seaborn - pretty plotting and basic visual analysis

• Bokeh - Interactive plotting

• Plotly - Interactive plotting

Data sources

• Quandl

• Google Finance

• Yahoo Finance

• FRED

2 Chapter 1. Introduction

http://pandas.pydata.org/
http://www.numpy.org/
https://www.scipy.org/scipylib/index.html
http://www.statsmodels.org/stable/index.html
http://matplotlib.org/
http://seaborn.pydata.org/
http://bokeh.pydata.org/
https://plot.ly/
https://www.quandl.com/
https://www.google.com/finance
https://finance.yahoo.com/
https://research.stlouisfed.org/fred2/

CHAPTER 2

Python basics

Contents

• Python basics
– Your first program
– Native Data Types

* Numbers
* Booleans
* Strings
* Lists
* Tuples
* Dictionaries
* Sets

– Indexing
– Control flow

* if/elif/else
* Loops
* List comprehensions

– Functions
* Function definition
* Positional arguments
* Default argument values
* Keyword arguments
* Arbitrary argument lists
* Lambda functions
* Passing by value

– Classes
– Modules and Packages
– Documenenting your code

Your first program

Launch your favorite environment:

• IPython shell by typing “ipython” from a Linux/Mac terminal, or from the Windows cmd shell

• Python shell by typing “python” from a Linux/Mac terminal, or from the Windows cmd shell

• Spyder includes both IPython and Python as interactive shells

3

Data Analysis in Python Documentation, Release 0.1

• Wakari.io has a variety of shells, including Ipython and Python

Once you have started the interpreter (wait for >>> is you use pure Python, or In [1]: if you use IPython), type:

>>> print('Hello world!')
Hello world!

Let’s play around and see what we can get without any knowledge of programming. Try some simple math calcula-
tions:

>>> 2*2
4
>>> 2+3
5
>>> 4*(2+3)
20
>>> 1/2
0.5
>>> 1/3
0.3333333333333333
>>> 5-10
-5
>>> 0/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

Everything seems to work as expected. The last line produces some internal complaints - we will get back to it later.

We can define some variables and ask the shell who they are:

>>> a = 2
>>> type(a)
<class 'int'>
>>> b = .1
>>> type(b)
<class 'float'>
>>> c = 'Hello'
>>> type(c)
<class 'str'>

Just to test the sanity of the language we can try adding up different variable types:

>>> a + b
2.1
>>> c + c
'HelloHello'
>>> a + c
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Clearly, Python does not know how to add up integers to strings. Neither do we...

What if we call something that does not exist yet?

>>> d
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'd' is not defined

4 Chapter 2. Python basics

https://www.wakari.io

Data Analysis in Python Documentation, Release 0.1

Variable names can only contain numbers, letters (both upper and lower case), and underscores (_). They must begin
with a letter or an underscore and are CaSe SeNsItIve. Some words are reserved in Python and so cannot be used for
variable names.

Native Data Types

Numbers

There are three numeric types:

• integers (int)

• floating point (float)

• complex (complex)

Hopefully, we will not need the last one. But if you see something like 3+5j or 6-7J, you know you are looking at
complex type.

Note that if you want to define a float, you have to use the dot (.), otherwise the output is an integer. For example,

>>> type(1)
<class 'int'>
>>> type(1.)
<class 'float'>
>>> type(float(1))
<class 'float'>
>>> type(int(1.))
<class 'int'>
>>> type(0)
<class 'int'>
>>> type(0.)
<class 'float'>
>>> type(.0)
<class 'float'>
>>> type(0.0)
<class 'float'>

This was extremely important in Python 2 and was the source of many inadvertent errors (try dividing 1 by 2 - you’d
be surprised). With Python 3 not anymore, but the general advice of being explicit in what you mean is still there.

Division (/) always returns a float. To do floor division and get an integer result (discarding any fractional result)
you can use the // operator; to calculate the remainder you can use %:

>>> 17 / 3 # classic division returns a float
5.666666666666667
>>> 17 // 3 # floor division discards the fractional part
5
>>> 17 % 3 # the % operator returns the remainder of the division
2
>>> 5 * 3 + 2 # result * divisor + remainder
17

Notice one way of commenting your code: just use # after the code and before any text.

Calculating powers is done with ** operator.

2.2. Native Data Types 5

Data Analysis in Python Documentation, Release 0.1

>>> 2**2
4
>>> 3**3
27
>>> 4**.5
2.0

Booleans

bool type is essential for any programming logic. Normally, truth and falcity are defined as True and False:

>>> x = True
>>> print(x)
True
>>> type(x)
<class 'bool'>
>>> y = False
>>> print(y)
False
>>> type(y)
<class 'bool'>

Additionally, all non-empty and non-zero values are interpreted by bool() function as True, while all empty and
zero values are False:

>>> print(bool(1), bool(1.), bool(-.1))
True True True
>>> print(bool(0), bool(.0), bool(None), bool(''), bool([]))
False False False False False

Strings

Strings can be difined using both single (’...’) or double quotes ("..."). Backslash can be used to escape quotes.

>>> 'spam eggs' # single quotes
'spam eggs'
>>> 'doesn\'t' # use \' to escape the single quote...
"doesn't"
>>> "doesn't" # ...or use double quotes instead
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'

The print() function produces a more readable output, by omitting the enclosing quotes and by printing escaped
and special characters:

>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'
>>> print('"Isn\'t," she said.')
"Isn't," she said.
>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print(), \n is included in the output

6 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

'First line.\nSecond line.'
>>> print(s) # with print(), \n produces a new line
First line.
Second line.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding
an r before the first quote:

>>> print('C:\some\name') # here \n means newline!
C:\some
ame
>>> print(r'C:\some\name') # note the r before the quote
C:\some\name

Python is very sensitive to code aesthetics (see Style Guide). In particular, you shoud restrict yourself to 79 characters
in one line! Use parenthesis to break long strings:

>>> text = ('Put several strings within parentheses '
'to have them joined together.')

>>> text
'Put several strings within parentheses to have them joined together.'

Strings can be constructed using math operators and by converting numbers into strings via str() function:

>>> 2 * 'a' + '_' + 3 * 'b' + '_' + 4 * (str(.5) + '_')
'aa_bbb_0.5_0.5_0.5_0.5_'

Note that Python can not convert numbers into strings automatically. Unless you use print() function or convert
explicitly.:

>>> 'a' + 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly
>>> 'a' + str(1)
'a1'
>>> print('a', 1)
a 1

Lists

Lists are very convenient and simplest data containers. Here is how we store a collection of numbers in a variable:

>>> a = [1, 3, 5]
>>> a
[1, 3, 5]
>>> type(a)
<class 'list'>

Lists are not restricted to be uniform in types of their elements:

>>> b = [5, 2.3, 'abc', [4, 'b'], a, print]
>>> b
[5, 2.3, 'abc', [4, 'b'], [1, 3, 5], <built-in function print>]

Lists can be modified:

2.2. Native Data Types 7

https://www.python.org/dev/peps/pep-0008/

Data Analysis in Python Documentation, Release 0.1

>>> a[1] = 4
>>> a
[1, 4, 5]

Lists can be merged or repeated:

>>> a + a
[1, 4, 5, 1, 4, 5]
>>> 3 * a
[1, 4, 5, 1, 4, 5, 1, 4, 5]

You can add one item to the end of the list inplace:

>>> a.append(7)
>>> a
[1, 4, 5, 7]

or add a few items:

>>> a.extend([0, 2])
>>> a
[1, 4, 5, 7, 0, 2]

Note the difference:

>>> a = [1, 3, 5]
>>> b = [1, 3, 5]
>>> a.append([2, 4, 6])
>>> b.extend([2, 4, 6])
>>> a
[1, 3, 5, [2, 4, 6]]
>>> b
[1, 3, 5, 2, 4, 6]

If the end of the list is not what you want, insert the element after a specified position:

>>> a.insert(1, .5)
>>> a
[1, 0.5, 4, 5, 7, 0, 2]

There are at least two methods to remove elements from a list:

>>> x = ['a', 'b', 'c', 'b']
>>> x.remove('b')
>>> x
['a', 'c', 'b']
>>> x.remove('b')
>>> x
['a', 'c']
>>> x.remove('b')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: list.remove(x): x not in list

or:

>>> y = ['a', 'b', 'c', 'b']
>>> y.pop()
'b'
>>> y
['a', 'b', 'c']

8 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

>>> y.pop(1)
'b'
>>> y
['a', 'c']

Here is how you sort a list without altering the original object, and inplace:

>>> x = ['a', 'b', 'c', 'b', 'a']
>>> sorted(x)
['a', 'a', 'b', 'b', 'c']
>>> x
['a', 'b', 'c', 'b', 'a']
>>> x.sort()
>>> x
['a', 'a', 'b', 'b', 'c']

Tuples

On the first glance tuples are very similar to lists. The difference in definition is the usage of parentheses () (or even
without them) instead of square brackets []:

>>> t = 12345, 54321, 'hello!'
>>> t
(12345, 54321, 'hello!')
>>> type(t)
<class 'tuple'>
>>> t = (12345, 54321, 'hello!')
>>> t
(12345, 54321, 'hello!')

The main difference is that tuples are immutable (impossible to modify):

>>> t[0] = 10
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Here are the reasons you want to use tuples:

• Tuples are faster than lists. If you’re defining a constant set of values and all you’re ever going to do with it is
iterate through it, use a tuple instead of a list.

• It makes your code safer if you “write-protect” data that doesn’t need to be changed.

• Some tuples can be used as dictionary keys (specifically, tuples that contain immutable values like strings,
numbers, and other tuples). Lists can never be used as dictionary keys, because lists are not immutable.

Dictionaries

A dictionary is an unordered set of key-value pairs. There are some restrictions on what can be a key. In general, keys
can not be mutable objects. Keys must be unique. Below are a few example of dictionary initialization:

>>> empty_dict = dict()
>>> empty_dict
{}
>>> empty_dict = {}
>>> empty_dict

2.2. Native Data Types 9

Data Analysis in Python Documentation, Release 0.1

{}
>>> type(empty_dict)
<class 'dict'>
>>> grades = {'Ivan': 4, 'Olga': 5}
>>> grades
{'Ivan': 4, 'Olga': 5}
>>> grades['Petr'] = 'F'
>>> grades
{'Ivan': 4, 'Petr': 'F', 'Olga': 5}
>>> grades['Olga']
5

Keys and values can be accessed separately if needed:

>>> grades.keys()
dict_keys(['Ivan', 'Olga'])
>>> grades.values()
dict_values([4, 5])

Sets

A set is an unordered collection of unique values. A single set can contain values of any immutable datatype. Once
you have two sets, you can do standard set operations like union, intersection, and set difference. Here is a brief
demonstration:

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> basket
{'orange', 'banana', 'pear', 'apple'}
>>> type(basket)
<class 'set'>
>>> 'orange' in basket
True
>>> 'crabgrass' in basket
False

Let’s create a second set and see what we can do with both:

>>> bag = {'banana', 'peach'}
>>> basket - bag
{'apple', 'orange', 'pear'}
>>> basket | bag
{'peach', 'orange', 'pear', 'banana', 'apple'}
>>> basket & bag
{'banana'}
>>> basket ^ bag
{'peach', 'apple', 'orange', 'pear'}

Indexing

Python data containers (including strings and lists) can be sliced to access their specific parts. Counting in Python
starts from zero. Keep this in mind when you want to access a specific character of a string:

>>> word = 'Python'
>>> word[0] # character in position 0
'P'

10 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

>>> word[5] # character in position 5
'n'

Indices may also be negative numbers, to start counting from the right:

>>> word[-1] # last character
'n'
>>> word[-2] # second-to-last character
'o'
>>> word[-6]
'P'

Going beyond a single charcter:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
'Py'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.:

>>> word[:2] # character from the beginning to position 2 (excluded)
'Py'
>>> word[4:] # characters from position 4 (included) to the end
'on'
>>> word[-2:] # characters from the second-last (included) to the end
'on'

One could be interested only in even/odd characters in the string. In that case, we need a third index in the slice:

>>> word[::2]
'Pto'
>>> word[1::2]
'yhn'

Negative index in the third position of the slice reverses the count:

>>> word[::-1]
'nohtyP'
>>> word[::-2]
'nhy'

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

+---+---+---+---+---+---+
| P | y | t | h | o | n |
+---+---+---+---+---+---+
0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

Indexing with lists works in the same way. But on top of that, if your list contains other lists, or strings (or other
iterables), then indexing becomes “layered”:

>>> x = [[1, 3, 5], ['c', 'a', 'b']]
>>> x[0][1]
3
>>> x[1][-2:]
['a', 'b']

2.3. Indexing 11

Data Analysis in Python Documentation, Release 0.1

Control flow

if/elif/else

Writing conditional statements in Python is very easy. Start from if, continue with elif, and finish with else. For
example,

In [1]: if 2**2 == 4:
...: print('Should be True')
...:

Should be True

Be careful to respect the indentation depth. The Ipython shell automatically increases the indentation depth after a
column : sign; to decrease the indentation depth, go four spaces to the left with the Backspace key. Press the Enter
key twice to leave the logical block.

In [1]: a = 10

In [2]: if a == 1:
...: print(1)
...: elif a == 2:
...: print(2)
...: elif a == 3:
...: print(3)
...: else:
...: print('A lot')
...:

A lot

Besides checking for equality as in the previous examples, you can check for other statements evaluating to bool.
These are comparison operators: <, >, <=, =>. Testing for equality of two objects is done with is operator:

>>> a, b = 1, 1.
>>> a == b
True
>>> a is b
False

You can test whether an object belongs to a collection using in operator. Note that if a collection is of type dict,
then the search is done over dictionaries:

>>> a = [1, 2, 4]
>>> 2 in a, 4 in a
(True, True)
>>> b = {'a': 3, 'c': 8}
>>> 'c' in b
True

Loops

If you do need to iterate over a sequence of numbers, the built-in function range() comes in handy. It generates
arithmetic progressions:

In [7]: for i in range(4):
...: print(i)
...:

0

12 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

1
2
3

The for statement in Python differs a bit from what you may be used to in other programming languages. Rather
than always iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define
both the iteration step and halting condition (as in C), Python’s for statement iterates over the items of any sequence
(a list or a string), in the order that they appear in the sequence.

In [6]: words = ['cat', 'window', 'bird']
...: for w in words:
...: print(w, len(w))
...:

cat 3
window 6
bird 4

Here is another example.

In [1]: for letter in 'Python':
...: print(letter)
...:

P
y
t
h
o
n

Coming back to range() function. It can have at most three arguments, range(first, last, step). Given
this knowledge we can generate various sequences. Note that this function returns neither a list not a tuple. In fact, it
is an object itself. In order to check what are the indices if we use range in a for loop, we can convert it to list using
list() function. The reason behind this behavior is to save memory: range does not store the whole list, only its
definition.

>>> list(range(2, 10))
[2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(2, 10, 3))
[2, 5, 8]
>>> list(range(-2, -10, -3))
[-2, -5, -8]

If you need to break out of the loop or skip an iteration, then you need to know two statements, break and continue,
respectively.

In [3]: a = [1, 0, 2, 4]
...: for element in a:
...: if element == 0:
...: continue
...: print(1. / element)
...:

1.0
0.5
0.25

or

In [4]: a = [1, 0, 2, 4]
...: for element in a:

2.4. Control flow 13

Data Analysis in Python Documentation, Release 0.1

...: if element == 0:

...: break

...: print(1. / element)

...:
1.0

Common use case is to iterate over items while keeping track of current index. Quick and dirty way to do this is:

In [5]: words = ('cool', 'powerful', 'readable')
...: for i in range(0, len(words)):
...: print(i, words[i])
...:

0 cool
1 powerful
2 readable

Yet, Python provides a much more elegant approach:

In [7]: for index, item in enumerate(words):
...: print(index, item)
...:

0 cool
1 powerful
2 readable

Try iterating over dictionaries yourslef. You should find out that Python iterates over keys only. In order to have access
to the whole pair, one should use items() method:

In [1]: grades = {'Ivan': 4, 'Olga': 5, 'Petr': 4.5}
...: for key, val in grades.items():
...: print('%s has grade: %s' % (key, val))
...:

Ivan has grade: 4
Petr has grade: 4.5
Olga has grade: 5

Here is how you might compute Pi:

In [1]: pi = 2
...: for i in range(1, 1000):
...: pi *= 4*i**2 / (4*i**2 - 1)
...: print(pi)
...:

3.1408069608284657

Or if you want to stop after certain precision was achieved (a common use case), you might want to use while loop:

In [3]: pi, error, i = 2, 1e10, 1
...: while error > 1e-3:
...: pi *= 4*i**2 / (4*i**2 - 1)
...: error = abs(pi - 3.141592653589793)
...: i += 1
...: print(pi)
...:

3.1405927760475945

14 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

List comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each
element is the result of some operations applied to each member of another sequence or iterable, or to create a subse-
quence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

In [1]: squares = []
...: for x in range(10):
...: squares.append(x**2)
...: print(squares)
...:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

As always, Python has a more elegant solution with the same result:

>>> squares = [x**2 for x in range(10)]

List comprehensions can include more for statements and even if statements:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

which creates a list of pairs with distinct elements. Equivalenly, one could write this over several lines:

In [1]: combs = []
...: for x in [1,2,3]:
...: for y in [3,1,4]:
...: if x != y:
...: combs.append((x, y))
...: print(combs)

Below are a few more examples:

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Finally, we can transpose a “matrix” represented as a list of lists in the following several ways.

2.4. Control flow 15

Data Analysis in Python Documentation, Release 0.1

In [1]: matrix = [
...: [1, 2, 3, 4],
...: [5, 6, 7, 8],
...: [9, 10, 11, 12],
...:]

First, the longest but clearest:

In [1]: transposed = []
...: for i in range(4):
...: transposed_row = []
...: for row in matrix:
...: transposed_row.append(row[i])
...: transposed.append(transposed_row)
...: print(transposed)
...:

[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

Next uses one list comprehension:

In [1]: transposed = []
...: for i in range(4):
...: transposed.append([row[i] for row in matrix])

Or, one single nested list comprehension:

>>> [[row[i] for row in matrix] for i in range(4)]

And, finally, the most elegant (in the context of standard library) way:

>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

Functions

Functions are well defined logically complete blocks of actions combined to serve a specific purpose. Functions are
separated from the main script to be reused again and again in other projects.

Function definition

The simplest function definition is illustrated in the following example:

def simplest_function():
print('I\'m your function!')

which after calling produces the following output:

>>> simplest_function()
I'm your function!

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

A slightly more complicated example to compute Fibbonaci series:

16 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

def fib(n):
"""Print a Fibonacci series up to n."""
a, b = 0, 1
while a < n:

print(a, end=' ')
a, b = b, a+b

Let’s try and call this function to find out all Fibonacci numbers up to 2000:

>>> fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

Notice the line below function name in tripled quotes. This is called docstring. We will come back to it in Docume-
nenting your code.

The result of running function above is just a screen output. If we try to assign the result of this function to a new
variable, we will only get None:

>>> out = fib(0)
>>> print(out)
None

What if you want to store the result? Then you have to use return statement and say explicitely what your function
should produce in the end.

def fib(n):
"""Print a Fibonacci series up to n and return the result."""
result = []
a, b = 0, 1
while a < n:

result.append(a)
a, b = b, a+b

return result

Now let’s try this function instead:

>>> out = fib(2000)
>>> print(out)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597]

Now variable out is non-empty. It holds the list of Fibonacci numbers.

Above examples have shown how to define functions without any arguments and with just one argument. In fact,
function definition is much more flexible than that. Read on.

Positional arguments

Passing several arguments to a function is done with their order in mind.

def power(x, a):
"""Take a power"""
return x**a

If you make a mistake in the order of arguments, the function has no way to see that:

>>> print(power(2, 3), power(3, 2))
8 9

2.5. Functions 17

Data Analysis in Python Documentation, Release 0.1

Default argument values

Some arguments may have default values. This is used to simplify function calls especially if arguments are numerous.
Default arguments always follow positional ones.

def power(x, a=2):
"""Take a power"""
return x**a

Here is how you call it:

>>> print(power(2), power(3))
4 9

The default values are evaluated once at function definition.

i = 5

def fun(arg=i):
print(arg)

i = 6

The call to this function prduces:

>>> fun()
5

The side effect is that the default value is shared between the calls:

def fun(a, L=[]):
L.append(a)
return L

print(fun(1))
print(fun(2))
print(fun(3))

This prints

[1]
[1, 2]
[1, 2, 3]

Here is one possible way to overcome this:

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

Keyword arguments

If keeping the order of the arguments becomes a problem, then keyword (or optional) arguments are here to help.
These are the same arguments with default values but redefined in function calls.

def slicer(seq, start=None, stop=None, step=None):
return seq[start:stop:step]

18 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

This function has three default values. They all follow the variable without default. Here are a few examples of using
this function:

>>> print(rhyme)
['one', 'fish,', 'two', 'fish,', 'red', 'fish,', 'blue', 'fish']
>>> print(slicer(rhyme))
['one', 'fish,', 'two', 'fish,', 'red', 'fish,', 'blue', 'fish']
>>> print(slicer(rhyme, step=2))
['one', 'two', 'red', 'blue']
>>> print(slicer(rhyme, 1, step=2))
['fish,', 'fish,', 'fish,', 'fish']
>>> print(slicer(rhyme, stop=4, step=2, start=1))
['fish,', 'fish,']
>>> print(slicer(rhyme, 1, 4, 2))
['fish,', 'fish,']

The following are invalid calls:

>>> slicer() # required argument missing
>>> slicer(start=2, 'Python') # non-keyword argument after a keyword argument
>>> slicer('Python', 2, start=3) # duplicate value for the same argument
>>> slicer(actor='John Cleese') # unknown keyword argument

Arbitrary argument lists

If you do not know in advance how many arguments you will need to pass to a function, then you can use function
definition as follows:

def fun(var, *args, **kwargs):
print('First mandatory argument:', var)
if len(args) > 0:

print('\nOptional positional arguments:')
for idx, arg in enumerate(args):

print('Argument number "%s" is "%s"' % (idx, arg))
if len(kwargs) > 0:

print('\nOptional keyword arguments:')
for key, value in kwargs.items():

print('Argument called "%s" is "%s"' % (key, value))

Calling this function produces:

>>> fun(2, 'a', 'Python', method='OLS', limit=1e2)
First mandatory argument: 2

Optional positional arguments:
Argument number "0" is "a"
Argument number "1" is "Python"

Optional keyword arguments:
Argument called "method" is "OLS"
Argument called "limit" is "100.0"

At the same time, calling this function with the only mandatory argument results in a much simple output:

>>> fun(2)
First mandatory argument: 2

Placing a star in front of args makes interpreter to expect a tuple of arbitrary length which is then unpacked to
separate arguments. Placing two stars in front of kwargs makes Python unpack it as a dictionary into key-value

2.5. Functions 19

Data Analysis in Python Documentation, Release 0.1

pairs. So, you can pass arguments as tuples and dictionaries which sometimes significantly improves readability of the
code. The following lines produce the same output as in the first example of this subsection:

>>> args = ('a', 'Python')
>>> kwargs = {'method': 'OLS', 'limit': 1e2}
>>> fun(2, *args, **kwargs)

Lambda functions

Small anonymous functions can be created with the lambda keyword. Lambda functions can be used wherever
function objects are required. They are restricted to be one-liners. Here is an example of a function that returns
another function:

def make_power(n):
return lambda x: x ** n

And the way to use it is as follows:

>>> power = make_power(3)
>>> print(power(0), power(2))
0 8

Another example shows how to pass a function as an argument without formally defining it:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

Passing by value

In Python parameters to functions are references to objects, which are passed by value. When you pass a variable to a
function, Python passes the reference to the object to which the variable refers (the value). Not the variable itself.

If the value passed in a function is immutable, the function does not modify the caller’s variable. If the value is
mutable, the function may modify the caller’s variable in-place:

def try_to_modify(x, y, z):
x = 23 # immutable object
y.append(42)
z = [99] # reference to new object
print(x, y, z)

Here is what happens if we call this function:

>>> a = 77 # immutable variable
>>> b = [99] # mutable variable
>>> c = [28]
>>> try_to_modify(a, b, c)
23 [99, 42] [99]
>>> print(a, b, c)
77 [99, 42] [28]

20 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

Classes

Python supports object-oriented programming (OOP). The goals of OOP are:

• to organize the code, and

• to re-use code in similar contexts.

Click here for further details.

Modules and Packages

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This is known as creating a script. As your
program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the
main module (the collection of variables that you have access to in a script executed at the top level and in calculator
mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file called fibo.py in the current directory with the
following contents:

Fibonacci numbers module

def fib(n):
"""write Fibonacci series up to n"""
a, b = 0, 1
while b < n:

print(b, end=' ')
a, b = b, a+b

print()

def fib2(n):
"""return Fibonacci series up to n"""
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the current symbol table; it only enters the
module name fibo there. Using the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

2.6. Classes 21

https://github.com/khrapovs/dataanalysispython/blob/master/lectures/classes.ipynb

Data Analysis in Python Documentation, Release 0.1

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module name is encountered in an import statement.

Modules can import other modules. It is customary but not required to place all import statements at the beginning
of a module (or script, for that matter). The imported module names are placed in the importing module’s global
symbol table.

There is a variant of the import statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes poorly
readable code. However, it is okay to use it to save typing in interactive sessions.

Probably the safest way of importing objects from modules is through a short reference to the module name:

>>> import fibo as fb
>>> fb.fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This way you may safely define another fibo function and it will not create any conflict with unambiguously different
function fb.fib.

When you run a Python module with:

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name__ set to “__main__”. That
means that by adding this code at the end of your module:

if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34

If the module is imported, the code is not run:

22 Chapter 2. Python basics

Data Analysis in Python Documentation, Release 0.1

>>> import fibo
>>>

For more details click here.

Documenenting your code

A Guide to NumPy/SciPy Documentation

2.8. Documenenting your code 23

https://docs.python.org/3/tutorial/modules.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

Data Analysis in Python Documentation, Release 0.1

24 Chapter 2. Python basics

CHAPTER 3

NumPy. Manipulations with numerical data

Contents

• NumPy. Manipulations with numerical data
– Array creation
– Indexing, Slicing
– Copies and Views

* No Copy at All
* View or Shallow Copy
* Deep Copy

– Array manipulations
* Basic operations
* Other operations
* Broadcasting

– Reductions

Array creation

NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of
the same type, indexed by a tuple of positive integers. Arrays make operations with large amounts of numeric data
very fast and are generally much more efficient than lists.

It is a convention to import NumPy as follows:

>>> import numpy as np

The simplest way to create an elementary array is from a list:

>>> a = np.array([0, 1, 2, 3])
>>> a
array([0, 1, 2, 3])
>>> type(a)
<type 'numpy.ndarray'>
>>> a.dtype
dtype('int64')

The type of the array can also be explicitly specified at creation time:

25

Data Analysis in Python Documentation, Release 0.1

>>> a = np.array([0, 1, 2, 3], float)
>>> a.dtype
dtype('float64')

Array transforms sequences of sequences into two-dimensional arrays, sequences of sequences of sequences into
three-dimensional arrays, and so on.

>>> b = np.array([[1.5,2,3], [4,5,6]])
>>> b
array([[1.5, 2. , 3.],

[4. , 5. , 6.]])
>>> c = np.array([[[1], [2]], [[3], [4]]])
>>> c
array([[[1],

[2]],

[[3],
[4]]])

>>> print(a.ndim, b.ndim, c.ndim)
1 2 3
>>> print(a.shape, b.shape, c.shape)
(4,) (2, 3) (2, 2, 1)

There are a lot of functions to create some standard arrays, such as filled with ones, zeros, etc.

>>> a = np.arange(10)
>>> np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.arange(1, 9, 2) # start, end (exclusive), step
array([1, 3, 5, 7])
>>> np.linspace(0, 1, 6) # start, end, num-points
array([0. , 0.2, 0.4, 0.6, 0.8, 1.])
>>> np.linspace(0, 1, 5, endpoint=False)
array([0. , 0.2, 0.4, 0.6, 0.8])
>>> np.ones((3, 3))
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> np.zeros((2, 2))
array([[0., 0.],

[0., 0.]])
>>> np.eye(3)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> np.diag(np.array([1, 2, 3, 4]))
array([[1, 0, 0, 0],

[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]])

>>> np.ones_like(np.zeros((2, 2)))
array([[1., 1.],

[1., 1.]])
>>> np.zeros_like(np.ones((2, 2)))
array([[0., 0.],

[0., 0.]])
>>> np.random.rand(4) # U[0, 1]
array([0.37534773, 0.19079141, 0.80011337, 0.54003586])
>>> np.random.randn(4) # N(0, 1)

26 Chapter 3. NumPy. Manipulations with numerical data

Data Analysis in Python Documentation, Release 0.1

array([-0.2981319 , -0.06627354, 0.31080455, 0.28470444])

One-dimensional versions of multi-dimensional arrays can be generated with flatten:

>>> a = np.array([[1, 2, 3], [4, 5, 6]], float)
>>> a
array([[1., 2., 3.],

[4., 5., 6.]])
>>> a.flatten()
array([1., 2., 3., 4., 5., 6.])

Two or more arrays can be concatenated together using the concatenate function with a tuple of the arrays to be joined:

>>> a = np.array([1, 2], float)
>>> b = np.array([3, 4, 5, 6], float)
>>> c = np.array([7, 8, 9], float)
>>> np.concatenate((a, b, c))
array([1., 2., 3., 4., 5., 6., 7., 8., 9.])

If an array has more than one dimension, it is possible to specify the axis along which multiple arrays are concatenated.
By default (without specifying the axis), NumPy concatenates along the first dimension:

>>> a = np.array([[1, 2], [3, 4]], float)
>>> b = np.array([[5, 6], [7, 8]], float)
>>> np.concatenate((a,b))
array([[1., 2.],

[3., 4.],
[5., 6.],
[7., 8.]])

>>> np.concatenate((a, b), axis=0)
array([[1., 2.],

[3., 4.],
[5., 6.],
[7., 8.]])

>>> np.concatenate((a, b), axis=1)
array([[1., 2., 5., 6.],

[3., 4., 7., 8.]])

Finally, the dimensionality of an array can be increased using the newaxis constant in bracket notation:

>>> a = np.array([1, 2, 3], float)
>>> a
array([1., 2., 3.])
>>> a[:,np.newaxis]
array([[1.],

[2.],
[3.]])

>>> a[:, np.newaxis].shape
(3, 1)
>>> b[np.newaxis, :]
array([[1., 2., 3.]])
>>> b[np.newaxis, :].shape
(1, 3)

Indexing, Slicing

The items of an array can be accessed and assigned to the same way as other Python sequences (e.g. lists):

3.2. Indexing, Slicing 27

Data Analysis in Python Documentation, Release 0.1

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[0], a[2], a[-1]
(0, 2, 9)

Similarly, array order can be reversed:

>>> a[::-1]
array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

For multidimensional arrays:

>>> a = np.diag(np.arange(3))
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 0, 2]])

>>> a[1, 1]
1
>>> a[2, 1] = 10
>>> a
array([[0, 0, 0],

[0, 1, 0],
[0, 10, 2]])

>>> a[1]
array([0, 1, 0])

Arrays, like other Python sequences can also be sliced:

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> a[2:9:3] # [start:end:step]
array([2, 5, 8])

All three slice components are not required: by default, start is 0, end is the last and step is 1:

>>> a[1:3]
array([1, 2])
>>> a[::2]
array([0, 2, 4, 6, 8])
>>> a[3:]
array([3, 4, 5, 6, 7, 8, 9])

A more sophisticated example for multidimensional array:

>>> a = np.arange(60).reshape((6, 10))[:, :6]
>>> a
array([[0, 1, 2, 3, 4, 5],

[10, 11, 12, 13, 14, 15],
[20, 21, 22, 23, 24, 25],
[30, 31, 32, 33, 34, 35],
[40, 41, 42, 43, 44, 45],
[50, 51, 52, 53, 54, 55]])

>>> a[0, 3:5]
array([3, 4])
>>> a[4:, 5:]
array([[45],

[55]])

28 Chapter 3. NumPy. Manipulations with numerical data

Data Analysis in Python Documentation, Release 0.1

>>> a[4:, 4:]
array([[44, 45],

[54, 55]])
>>> a[:, 2]
array([2, 12, 22, 32, 42, 52])
>>> a[2::2, ::2]
array([[20, 22, 24],

[40, 42, 44]])

Arrrays can be sliced using boolean logic:

>>> np.random.seed(3)
>>> a = np.random.random_integers(0, 20, 15)
>>> a
array([10, 3, 8, 0, 19, 10, 11, 9, 10, 6, 0, 20, 12, 7, 14])
>>> (a % 3 == 0)
array([False, True, False, True, False, False, False, True, False,

True, True, False, True, False, False], dtype=bool)
>>> a[a % 3 == 0]
array([3, 0, 9, 6, 0, 12])
>>> a[a % 3 == 0] = -1
>>> a
array([10, -1, 8, -1, 19, 10, 11, -1, 10, -1, -1, 20, -1, 7, 14])

Copies and Views

When operating and manipulating arrays, their data is sometimes copied into a new array and sometimes not. This is
often a source of confusion for beginners. There are three cases:

No Copy at All

Simple assignments make no copy of array objects or of their data.:

>>> a = arange(12)
>>> b = a # no new object is created
>>> b is a # a and b are two names for the same ndarray object
True
>>> b.shape = 3, 4 # changes the shape of a
>>> a.shape
(3, 4)

Python passes mutable objects as references, so function calls make no copy.

>>> def f(x):
... # id is a unique identifier of an object
... print id(x)
...
>>> id(a)
148293216
>>> f(a)
148293216

3.3. Copies and Views 29

Data Analysis in Python Documentation, Release 0.1

View or Shallow Copy

Different array objects can share the same data. The view method creates a new array object that looks at the same
data.

>>> c = a.view()
>>> c is a
False
>>> c.base is a # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>> c.shape = 2, 6 # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0, 4] = 1234 # a's data changes
>>> a
array([[0, 1, 2, 3],

[1234, 5, 6, 7],
[8, 9, 10, 11]])

Slicing an array returns a view of it:

>>> s = a[:, 1:3]
>>> s[:] = 10 # s[:] is a view of s. Note the difference between s=10 and s[:]=10
>>> a
array([[0, 10, 10, 3],

[1234, 10, 10, 7],
[8, 10, 10, 11]])

Deep Copy

The copy method makes a complete copy of the array and its data.:

>>> d = a.copy() # a new array object with new data is created
>>> d is a
False
>>> d.base is a # d doesn't share anything with a
False
>>> d[0, 0] = 9999
>>> a
array([[0, 10, 10, 3],

[1234, 10, 10, 7],
[8, 10, 10, 11]])

Array manipulations

Basic operations

With scalars:

>>> a = np.array([1, 2, 3, 4])
>>> a + 1
array([2, 3, 4, 5])

30 Chapter 3. NumPy. Manipulations with numerical data

Data Analysis in Python Documentation, Release 0.1

>>> 2**a
array([2, 4, 8, 16])

All arithmetic operates elementwise:

>>> b = np.ones(4) + 1
>>> a - b
array([-1., 0., 1., 2.])
>>> a * b
array([2., 4., 6., 8.])
>>> c = np.arange(5)
>>> 2**(c + 1) - c
array([2, 3, 6, 13, 28])

Array multiplication is not matrix multiplication:

>>> c = np.ones((3, 3))
>>> c * c
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

>>> c.dot(c)
array([[3., 3., 3.],

[3., 3., 3.],
[3., 3., 3.]])

Other operations

Comparisons:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([4, 2, 2, 4])
>>> a == b
array([False, True, False, True], dtype=bool)
>>> a > b
array([False, False, True, False], dtype=bool)

Array-wise comparisons:

>>> a = np.array([1, 2, 3, 4])
>>> b = np.array([4, 2, 2, 4])
>>> c = np.array([1, 2, 3, 4])
>>> np.array_equal(a, b)
False
>>> np.array_equal(a, c)
True
>>> np.allclose(a, a + a*1e-5)
True
>>> np.allclose(a, a + a*1e-4)
False

Logical operations:

>>> a = np.array([1, 1, 0, 0], dtype=bool)
>>> b = np.array([1, 0, 1, 0], dtype=bool)
>>> np.logical_or(a, b)
array([True, True, True, False], dtype=bool)

3.4. Array manipulations 31

Data Analysis in Python Documentation, Release 0.1

>>> np.logical_and(a, b)
array([True, False, False, False], dtype=bool)

The where function forms a new array from two arrays of equivalent size using a Boolean filter to choose between
elements of the two. Its basic syntax is where(boolarray, truearray, falsearray):

>>> a = np.array([1, 3, 0], float)
>>> np.where(a != 0, 1 / a, a)
array([1. , 0.33333333, 0.])

Broadcasting can also be used with the where function:

>>> np.where(a > 0, 3, 2)
array([3, 3, 2])

Broadcasting

Arrays that do not match in the number of dimensions will be broadcasted by Python to perform mathematical op-
erations. This often means that the smaller array will be repeated as necessary to perform the operation indicated.
Consider the following:

>>> a = np.array([[1, 2], [3, 4], [5, 6]], float)
>>> b = np.array([-1, 3], float)
>>> a
array([[1., 2.],

[3., 4.],
[5., 6.]])

>>> b
array([-1., 3.])
>>> a + b
array([[0., 5.],

[2., 7.],
[4., 9.]])

Here, the one-dimensional array b was broadcasted to a two-dimensional array that matched the size of a. In essence,
b was repeated for each item in a, as if it were given by:

array([[-1., 3.],
[-1., 3.],
[-1., 3.]])

Python automatically broadcasts arrays in this manner. Sometimes, however, how we should broadcast is ambiguous.
In these cases, we can use the newaxis constant to specify how we want to broadcast:

>>> a = np.zeros((2,2), float)
>>> b = np.array([-1., 3.], float)
>>> a
array([[0., 0.],

[0., 0.]])
>>> b
array([-1., 3.])
>>> a + b
array([[-1., 3.],

[-1., 3.]])
>>> a + b[np.newaxis, :]
array([[-1., 3.],

[-1., 3.]])
>>> a + b[:, np.newaxis]

32 Chapter 3. NumPy. Manipulations with numerical data

Data Analysis in Python Documentation, Release 0.1

array([[-1., -1.],
[3., 3.]])

Reductions

We can easily compute sums and products:

>>> a = np.array([2, 4, 3])
>>> a.sum(), a.prod()
(9, 24)
>>> np.sum(a), np.prod(a)
(9, 24)

Some basic statistics:

>>> a = np.random.randn(100)
>>> a.mean()
-0.083139603089394359
>>> np.median(a)
-0.14321054235009417
>>> a.std()
1.0565446101521685
>>> a.var()
1.1162865132415978
>>> a.min(), a.max()
(-2.9157377517927121, 2.1581493420569187)
>>> np.percentile(a, [5, 50, 95])
array([-1.48965296, -0.08633928, 1.36836205])

For multidimensional arrays, each of the functions thus far described can take an optional argument axis that will
perform an operation along only the specified axis, placing the results in a return array:

>>> a = np.array([[0, 2], [3, -1], [3, 5]], float)
>>> a.mean(axis=0)
array([2., 2.])
>>> a.mean(axis=1)
array([1., 1., 4.])
>>> a.min(axis=1)
array([0., -1., 3.])
>>> a.max(axis=0)
array([3., 5.])

It is possible to find the index of the smallest and largest element:

>>> a = np.array([2, 1, 9], float)
>>> a.argmin()
1
>>> a.argmax()
2

Like lists, arrays can be sorted:

>>> a = np.array([6, 2, 5, -1, 0], float)
>>> sorted(a)
[-1.0, 0.0, 2.0, 5.0, 6.0]
>>> a.sort()

3.5. Reductions 33

Data Analysis in Python Documentation, Release 0.1

>>> a
array([-1., 0., 2., 5., 6.])

Values in an array can be “clipped” to be within a prespecified range. This is the same as applying min(max(x,
minval), maxval) to each element x in an array.

>>> a = np.array([6, 2, 5, -1, 0], float)
>>> a.clip(0, 5)
array([5., 2., 5., 0., 0.])

Unique elements can be extracted from an array:

>>> a = np.array([1, 1, 4, 5, 5, 5, 7], float)
>>> np.unique(a)
array([1., 4., 5., 7.])

34 Chapter 3. NumPy. Manipulations with numerical data

CHAPTER 4

Pandas. Data processing

Pandas is an essential data analysis library within Python ecosystem. For more details read Pandas Documentation.

35

http://pandas.pydata.org/

Data Analysis in Python Documentation, Release 0.1

Contents

• Pandas. Data processing
– Data structures

* Series
· Array-like
· Dictionary
· Scalar
· Series is similar to array
· Series is similar to dictionary
· Name attribute

* DataFrame
· From dict of Series or dicts
· From dict of array-likes
· From a list of dicts
· From a dict of tuples
· From a Series

– Basic functionality
* Head and Tail
* Attributes and the raw values
* Descriptive statistics
* Summarizing data: describe
* Index of Min/Max Values
* Value counts (histogramming) / Mode
* Discretization and quantiling

– Function application
* Row or Column-wise Function Application
* Applying elementwise Python functions

– Reindexing and altering labels
* Reindexing to align with another object
* Aligning objects with each other with align
* Filling while reindexing
* Dropping labels from an axis
* Renaming / mapping labels

– Sorting by index and value
* Smallest / largest values
* Sorting by a multi-index column

– Indexing and selecting data
* Different Choices for Indexing
* Selection By Position
* Boolean indexing
* Indexing with isin
* Set / Reset Index

Data structures

Pandas operates with three basic datastructures: Series, DataFrame, and Panel. There are extensions to this list, but
for the purposes of this material even the first two are more than enough.

We start by importing NumPy and Pandas using their conventional short names:

36 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: randn = np.random.rand # To shorten notation in the code that follows

Series

Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers,
Python objects, etc.). The axis labels are collectively referred to as the index. The basic method to create a Series is to
call:

>>> s = Series(data, index=index)

The first mandatory argument can be

• array-like

• dictionary

• scalar

Array-like

If data is an array-like, index must be the same length as data. If no index is passed, one will be created having
values [0, ..., len(data) - 1].

In [4]: s = pd.Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [5]: s
Out[5]:
a 0.261916
b 0.937129
c 0.418654
d 0.719897
e 0.343347
dtype: float64

In [6]: s.index
\\Out[6]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [7]: pd.Series(randn(5))
\\\Out[7]:
0 0.000740
1 0.508279
2 0.116335
3 0.832410
4 0.960953
dtype: float64

Dictionary

Dictionaries already have a natural candidate for the index, so passing the index separately seems redundant, al-
though possible.

4.1. Data structures 37

Data Analysis in Python Documentation, Release 0.1

In [8]: d = {'a' : 0., 'b' : 1., 'c' : 2.}

In [9]: pd.Series(d)
Out[9]:
a 0.0
b 1.0
c 2.0
dtype: float64

In [10]: pd.Series(d, index=['b', 'c', 'd', 'a'])
\\\Out[10]:
b 1.0
c 2.0
d NaN
a 0.0
dtype: float64

Scalar

If data is a scalar value, an index must be provided. The value will be repeated to match the length of index.

In [11]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[11]:
a 5.0
b 5.0
c 5.0
d 5.0
e 5.0
dtype: float64

Series is similar to array

Slicing and other operations on Series produce very similar results to those on array but with a twist. Index is also
sliced and always remain a part of a data container.

In [12]: s[0]
Out[12]: 0.26191552776599869

In [13]: s[:3]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[13]:
a 0.261916
b 0.937129
c 0.418654
dtype: float64

In [14]: s[s > s.median()]
\\Out[14]:
b 0.937129
d 0.719897
dtype: float64

In [15]: s[[4, 3, 1]]
\\\Out[15]:
e 0.343347
d 0.719897

38 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

b 0.937129
dtype: float64

Similarly to NumPy arrays, Series can be used to speed up loops by using vectorization.

In [16]: s + s
Out[16]:
a 0.523831
b 1.874258
c 0.837307
d 1.439795
e 0.686694
dtype: float64

In [17]: s * 2
\\\Out[17]:
a 0.523831
b 1.874258
c 0.837307
d 1.439795
e 0.686694
dtype: float64

In [18]: np.exp(s)
\\Out[18]:
a 1.299417
b 2.552643
c 1.519914
d 2.054222
e 1.409658
dtype: float64

A key difference between Series and array is that operations between Series automatically align the data based on
label. Thus, you can write computations without giving consideration to whether the Series involved have the same
labels.

In [19]: s[1:] + s[:-1]
Out[19]:
a NaN
b 1.874258
c 0.837307
d 1.439795
e NaN
dtype: float64

The result of an operation between unaligned Series will have the union of the indexes involved. If a label is not
found in one Series or the other, the result will be marked as missing NaN. Being able to write code without doing any
explicit data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated
data alignment features of the pandas data structures set pandas apart from the majority of related tools for working
with labeled data.

Series is similar to dictionary

A few examples to illustrate the heading.

In [20]: s['a']
Out[20]: 0.26191552776599869

4.1. Data structures 39

Data Analysis in Python Documentation, Release 0.1

In [21]: s['e'] = 12.

In [22]: s
Out[22]:
a 0.261916
b 0.937129
c 0.418654
d 0.719897
e 12.000000
dtype: float64

In [23]: 'e' in s
\\Out[23]: True

In [24]: 'f' in s
\\Out[24]: False

Name attribute

Series can also have a name attribute which will become very useful when summarizing data with tables and plots.

In [25]: s = pd.Series(np.random.randn(5), name='random series')

In [26]: s
Out[26]:
0 -0.678101
1 -0.664686
2 -0.775879
3 -0.470269
4 -0.375136
Name: random series, dtype: float64

In [27]: s.name
\\Out[27]: 'random series'

DataFrame

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. Like Series,
DataFrame accepts many different kinds of input:

• Dict of 1D ndarrays, lists, dicts, or Series

• 2-D numpy.ndarray

• A Series

• Another DataFrame

Along with the data, you can optionally pass index (row labels) and columns (column labels) arguments. If you pass
an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict
of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.

40 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

From dict of Series or dicts

The result index will be the union of the indexes of the various Series. If there are any nested dicts, these will be first
converted to Series. If no columns are passed, the columns will be the sorted list of dict keys.

In [28]: d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
....: 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
....:

In [29]: df = pd.DataFrame(d)

In [30]: df
Out[30]:

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

In [31]: pd.DataFrame(d, index=['d', 'b', 'a'])
\\Out[31]:

one two
d NaN 4.0
b 2.0 2.0
a 1.0 1.0

In [32]: pd.DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
\\Out[32]:

two three
d 4.0 NaN
b 2.0 NaN
a 1.0 NaN

The row and column labels can be accessed respectively by accessing the index and columns attributes:

In [33]: df.index
Out[33]: Index(['a', 'b', 'c', 'd'], dtype='object')

In [34]: df.columns
\\\Out[34]: Index(['one', 'two'], dtype='object')

From dict of array-likes

The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays.
If no index is passed, the result will be range(n), where n is the array length.

In [35]: d = {'one' : [1., 2., 3., 4.], 'two' : [4., 3., 2., 1.]}

In [36]: pd.DataFrame(d)
Out[36]:

one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0

In [37]: pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
\\Out[37]:

4.1. Data structures 41

Data Analysis in Python Documentation, Release 0.1

one two
a 1.0 4.0
b 2.0 3.0
c 3.0 2.0
d 4.0 1.0

From a list of dicts

In [38]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [39]: pd.DataFrame(data2)
Out[39]:

a b c
0 1 2 NaN
1 5 10 20.0

In [40]: pd.DataFrame(data2, index=['first', 'second'])
\\\Out[40]:

a b c
first 1 2 NaN
second 5 10 20.0

In [41]: pd.DataFrame(data2, columns=['a', 'b'])
\\\Out[41]:

a b
0 1 2
1 5 10

From a dict of tuples

In [42]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
....: ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
....: ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
....: ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
....: ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
....:

Out[42]:
a b
a b c a b

A B 4.0 1.0 5.0 8.0 10.0
C 3.0 2.0 6.0 7.0 NaN
D NaN NaN NaN NaN 9.0

From a Series

The result will be a DataFrame with the same index as the input Series, and with one column whose name is the
original name of the Series (only if no other column name provided).

Basic functionality

Here are the data sets that will be used below.

42 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

In [43]: index = pd.date_range('1/1/2000', periods=8)

In [44]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [45]: df = pd.DataFrame(np.random.randn(8, 3), index=index,
....: columns=['A', 'B', 'C'])
....:

Head and Tail

To view a small sample of a Series or DataFrame object, use the head() and tail() methods. The default number
of elements to display is five, but you may pass a custom number.

In [46]: long_series = pd.Series(np.random.randn(1000))

In [47]: long_series.head()
Out[47]:
0 -0.780819
1 0.631099
2 0.416289
3 1.176433
4 -0.116158
dtype: float64

In [48]: long_series.tail(3)
\\\Out[48]:
997 -0.733624
998 -0.843908
999 -1.428264
dtype: float64

Attributes and the raw values

Pandas objects have a number of attributes enabling you to access the metadata

• shape: gives the axis dimensions of the object, consistent with ndarray

• Axis labels

– Series: index (only axis)

– DataFrame: index (rows) and columns

Note, these attributes can be safely assigned to!

In [49]: df[:2]
Out[49]:

A B C
2000-01-01 -0.019051 1.754216 -0.683589
2000-01-02 -0.040374 -1.482709 -0.273475

In [50]: df.columns = [x.lower() for x in df.columns]

In [51]: df
Out[51]:

a b c
2000-01-01 -0.019051 1.754216 -0.683589

4.2. Basic functionality 43

Data Analysis in Python Documentation, Release 0.1

2000-01-02 -0.040374 -1.482709 -0.273475
2000-01-03 -1.495000 -1.220174 0.549418
2000-01-04 0.610248 -0.086783 -1.162908
2000-01-05 0.594158 -0.237087 -0.943017
2000-01-06 0.407705 0.210901 0.434077
2000-01-07 0.550795 -0.392167 -0.857879
2000-01-08 0.305878 0.924261 0.259116

To get the actual data inside a data structure, one need only access the values property:

In [52]: s.values
Out[52]: array([0.09233447, -0.94042079, 0.3506382 , -0.59325573, -1.00153266])

In [53]: df.values
\\Out[53]:
array([[-0.01905145, 1.75421565, -0.68358856],

[-0.04037431, -1.48270934, -0.27347476],
[-1.49500022, -1.22017434, 0.54941815],
[0.61024815, -0.086783 , -1.16290799],
[0.59415766, -0.23708742, -0.94301684],
[0.40770453, 0.21090147, 0.43407654],
[0.55079505, -0.39216667, -0.85787884],
[0.30587792, 0.9242608 , 0.25911602]])

Descriptive statistics

A large number of methods for computing descriptive statistics and other related operations on Series and
DataFrame. Most of these are aggregations (hence producing a lower-dimensional result) like sum(), mean(),
and quantile(), but some of them, like cumsum() and cumprod(), produce an object of the same size. Gen-
erally speaking, these methods take an axis argument, just like ndarray.{sum, std, ...}, but the axis can be
specified by name or integer:

• Series: no axis argument needed

• DataFrame: “index” (axis=0, default), “columns” (axis=1)

In [54]: df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c']),
....: 'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']),
....: 'three' : pd.Series(np.random.randn(3), index=['b', 'c', 'd'])})
....:

In [55]: df.mean(0)
Out[55]:
one -0.162649
three -0.168463
two 0.602863
dtype: float64

In [56]: df.mean(1)
\\\Out[56]:
a -0.537465
b 0.221972
c 0.230379
d 0.567997
dtype: float64

All such methods have a skipna option signaling whether to exclude missing data (True by default):

44 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

In [57]: df.sum(0, skipna=False)
Out[57]:
one NaN
three NaN
two 2.411452
dtype: float64

In [58]: df.sum(axis=1, skipna=True)
\\\Out[58]:
a -1.074930
b 0.665916
c 0.691136
d 1.135994
dtype: float64

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standard-
ization (rendering data zero mean and standard deviation 1), very concisely:

In [59]: ts_stand = (df - df.mean()) / df.std()

In [60]: ts_stand.std()
Out[60]:
one 1.0
three 1.0
two 1.0
dtype: float64

In [61]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)

In [62]: xs_stand.std(1)
Out[62]:
a 1.0
b 1.0
c 1.0
d 1.0
dtype: float64

Series also has a method nunique() which will return the number of unique non-null values:

In [63]: series = pd.Series(np.random.randn(500))

In [64]: series[20:500] = np.nan

In [65]: series[10:20] = 5

In [66]: series.nunique()
Out[66]: 11

Summarizing data: describe

There is a convenient describe() function which computes a variety of summary statistics about a Series or the
columns of a DataFrame:

In [67]: series = pd.Series(np.random.randn(1000))

In [68]: series[::2] = np.nan

4.2. Basic functionality 45

Data Analysis in Python Documentation, Release 0.1

In [69]: series.describe()
Out[69]:
count 500.000000
mean -0.035852
std 1.017672
min -3.870073
25% -0.645819
50% -0.051329
75% 0.646074
max 3.246603
dtype: float64

In [70]: frame = pd.DataFrame(np.random.randn(1000, 5),
....: columns=['a', 'b', 'c', 'd', 'e'])
....:

In [71]: frame.ix[::2] = np.nan

In [72]: frame.describe()
Out[72]:

a b c d e
count 500.000000 500.000000 500.000000 500.000000 500.000000
mean 0.034814 0.038012 -0.022464 0.038878 -0.025334
std 0.940658 0.970266 0.974810 0.976934 1.002783
min -2.983143 -2.839655 -2.490240 -2.700005 -2.898009
25% -0.630357 -0.701047 -0.652933 -0.657623 -0.729624
50% 0.003269 0.086234 -0.012090 0.031278 0.021198
75% 0.633798 0.717495 0.646337 0.716754 0.689467
max 3.484608 2.799842 3.175704 3.333989 3.476817

You can select specific percentiles to include in the output:

In [73]: series.describe(percentiles=[.05, .25, .75, .95])
Out[73]:
count 500.000000
mean -0.035852
std 1.017672
min -3.870073
5% -1.764398
25% -0.645819
50% -0.051329
75% 0.646074
95% 1.663934
max 3.246603
dtype: float64

For a non-numerical Series object, describe() will give a simple summary of the number of unique values and
most frequently occurring values:

In [74]: s = pd.Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a'])

In [75]: s.describe()
Out[75]:
count 9
unique 4
top a
freq 5
dtype: object

46 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

Note that on a mixed-type DataFrame object, describe() will restrict the summary to include only numerical
columns or, if none are, only categorical columns:

In [76]: frame = pd.DataFrame({'a': ['Yes', 'Yes', 'No', 'No'], 'b': range(4)})

In [77]: frame.describe()
Out[77]:

b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000

This behaviour can be controlled by providing a list of types as include/exclude arguments. The special value
all can also be used:

In [78]: frame.describe(include=['object'])
Out[78]:

a
count 4
unique 2
top Yes
freq 2

In [79]: frame.describe(include=['number'])
\\Out[79]:

b
count 4.000000
mean 1.500000
std 1.290994
min 0.000000
25% 0.750000
50% 1.500000
75% 2.250000
max 3.000000

In [80]: frame.describe(include='all')
\\Out[80]:

a b
count 4 4.000000
unique 2 NaN
top Yes NaN
freq 2 NaN
mean NaN 1.500000
std NaN 1.290994
min NaN 0.000000
25% NaN 0.750000
50% NaN 1.500000
75% NaN 2.250000
max NaN 3.000000

4.2. Basic functionality 47

Data Analysis in Python Documentation, Release 0.1

Index of Min/Max Values

The idxmin() and idxmax() functions on Series and DataFrame compute the index labels with the minimum and
maximum corresponding values:

In [81]: s1 = pd.Series(np.random.randn(5))

In [82]: s1
Out[82]:
0 1.481007
1 0.718269
2 0.320711
3 -0.597705
4 -0.140049
dtype: float64

In [83]: s1.idxmin(), s1.idxmax()
\\\Out[83]: (3, 0)

In [84]: df1 = pd.DataFrame(np.random.randn(5,3), columns=['A','B','C'])

In [85]: df1
Out[85]:

A B C
0 -0.361656 0.266880 0.783477
1 1.612599 0.557871 -0.232650
2 -0.202611 0.926477 -0.668062
3 -0.883837 -0.350701 0.736130
4 -1.598094 0.824303 -1.996433

In [86]: df1.idxmin(axis=0)
\\Out[86]:
A 4
B 3
C 4
dtype: int64

In [87]: df1.idxmin(axis=1)
\\Out[87]:
0 A
1 C
2 C
3 A
4 C
dtype: object

When there are multiple rows (or columns) matching the minimum or maximum value, idxmin() and idxmax()
return the first matching index:

In [88]: df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba'))

In [89]: df3
Out[89]:

A
e 2.0
d 1.0
c 1.0
b 3.0
a NaN

48 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

In [90]: df3['A'].idxmin()
\\Out[90]: 'd'

Value counts (histogramming) / Mode

The value_counts() Series method and top-level function computes a histogram of a 1D array of values.

In [91]: data = np.random.randint(0, 7, size=50)

In [92]: data
Out[92]:
array([0, 0, 0, 1, 1, 5, 3, 3, 2, 3, 0, 0, 1, 4, 4, 6, 6, 0, 2, 4, 2, 0, 3,

1, 1, 2, 2, 1, 1, 5, 3, 0, 5, 4, 6, 0, 2, 6, 2, 1, 2, 3, 5, 5, 4, 1,
6, 0, 3, 6])

In [93]: s = pd.Series(data)

In [94]: s.value_counts()
Out[94]:
0 10
1 9
2 8
3 7
6 6
5 5
4 5
dtype: int64

Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:

In [95]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])

In [96]: s5.mode()
Out[96]:
0 3
1 7
dtype: int64

In [97]: df5 = pd.DataFrame({'A': np.random.randint(0, 7, size=50),
....: 'B': np.random.randint(-10, 15, size=50)})
....:

In [98]: df5.mode()
Out[98]:

A B
0 5 2

Discretization and quantiling

Continuous values can be discretized using the cut() (bins based on values) and qcut() (bins based on sample
quantiles) functions:

In [99]: arr = np.random.randn(20)

In [100]: factor = pd.cut(arr, 4)

4.2. Basic functionality 49

Data Analysis in Python Documentation, Release 0.1

In [101]: factor
Out[101]:
[(-2.0973, -1.174], (0.665, 1.585], (0.665, 1.585], (-0.254, 0.665], (-2.0973, -1.174], ..., (-1.174, -0.254], (-2.0973, -1.174], (-1.174, -0.254], (-0.254, 0.665], (-1.174, -0.254]]
Length: 20
Categories (4, object): [(-2.0973, -1.174] < (-1.174, -0.254] < (-0.254, 0.665] < (0.665, 1.585]]

In [102]: factor = pd.cut(arr, [-5, -1, 0, 1, 5])

In [103]: factor
Out[103]:
[(-5, -1], (1, 5], (1, 5], (0, 1], (-5, -1], ..., (-1, 0], (-5, -1], (-1, 0], (0, 1], (-1, 0]]
Length: 20
Categories (4, object): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]

qcut() computes sample quantiles. For example, we could slice up some normally distributed data into equal-size
quartiles like so:

In [104]: factor = pd.qcut(arr, [0, .25, .5, .75, 1])

In [105]: factor
Out[105]:
[[-2.0936, -1.134], (-0.181, 1.585], (-0.181, 1.585], (-0.181, 1.585], [-2.0936, -1.134], ..., (-0.663, -0.181], [-2.0936, -1.134], (-0.663, -0.181], (-0.181, 1.585], (-1.134, -0.663]]
Length: 20
Categories (4, object): [[-2.0936, -1.134] < (-1.134, -0.663] < (-0.663, -0.181] < (-0.181, 1.585]]

In [106]: pd.value_counts(factor)
\\\Out[106]:
(-0.181, 1.585] 5
(-0.663, -0.181] 5
(-1.134, -0.663] 5
[-2.0936, -1.134] 5
dtype: int64

We can also pass infinite values to define the bins:

In [107]: arr = np.random.randn(20)

In [108]: factor = pd.cut(arr, [-np.inf, 0, np.inf])

In [109]: factor
Out[109]:
[(0, inf], (0, inf], (0, inf], (0, inf], (-inf, 0], ..., (0, inf], (-inf, 0], (-inf, 0], (-inf, 0], (0, inf]]
Length: 20
Categories (2, object): [(-inf, 0] < (0, inf]]

Function application

Row or Column-wise Function Application

Arbitrary functions can be applied along the axes of a DataFrame using the apply() method, which, like the de-
scriptive statistics methods, take an optional axis argument:

In [110]: df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c']),
.....: 'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']),
.....: 'three' : pd.Series(np.random.randn(3), index=['b', 'c', 'd'])})

50 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

.....:

In [111]: df
Out[111]:

one three two
a -1.268951 NaN 1.268233
b -0.260681 0.431861 1.658656
c -0.853457 -0.877516 0.296434
d NaN -0.338294 1.029727

In [112]: df.apply(np.mean)
\\\Out[112]:
one -0.794363
three -0.261316
two 1.063262
dtype: float64

In [113]: df.apply(np.mean, axis=1)
\\\Out[113]:
a -0.000359
b 0.609945
c -0.478180
d 0.345716
dtype: float64

In [114]: df.apply(lambda x: x.max() - x.min())
\\\Out[114]:
one 1.008270
three 1.309377
two 1.362222
dtype: float64

In [115]: df.apply(np.cumsum)
\\\Out[115]:

one three two
a -1.268951 NaN 1.268233
b -1.529632 0.431861 2.926889
c -2.383089 -0.445655 3.223322
d NaN -0.783949 4.253049

Depending on the return type of the function passed to apply(), the result will either be of lower dimension or the
same dimension.

apply() combined with some cleverness can be used to answer many questions about a data set. For example,
suppose we wanted to extract the date where the maximum value for each column occurred:

In [116]: tsdf = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'],
.....: index=pd.date_range('1/1/2000', periods=1000))
.....:

In [117]: tsdf.apply(lambda x: x.idxmax())
Out[117]:
A 2001-11-24
B 2000-09-07
C 2002-08-10
dtype: datetime64[ns]

You may also pass additional arguments and keyword arguments to the apply() method. For instance, consider the
following function you would like to apply:

4.3. Function application 51

Data Analysis in Python Documentation, Release 0.1

In [118]: def subtract_and_divide(x, sub, divide=1):
.....: return (x - sub) / divide
.....:

In [119]: df.apply(subtract_and_divide, args=(5,), divide=3)
Out[119]:

one three two
a -2.089650 NaN -1.243922
b -1.753560 -1.522713 -1.113781
c -1.951152 -1.959172 -1.567855
d NaN -1.779431 -1.323424

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:

In [120]: tsdf = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C'],
.....: index=pd.date_range('1/1/2000', periods=10))
.....:

In [121]: tsdf.ix[4:8] = np.nan

In [122]: tsdf
Out[122]:

A B C
2000-01-01 -1.701747 0.338606 1.015076
2000-01-02 0.150664 1.668121 -0.828408
2000-01-03 -0.070239 -1.540131 -2.028955
2000-01-04 -0.285152 0.602373 -0.371809
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 NaN NaN NaN
2000-01-09 -0.531292 0.853047 -0.288414
2000-01-10 -0.146233 1.290812 -0.519207

In [123]: tsdf.apply(pd.Series.interpolate)
\\Out[123]:

A B C
2000-01-01 -1.701747 0.338606 1.015076
2000-01-02 0.150664 1.668121 -0.828408
2000-01-03 -0.070239 -1.540131 -2.028955
2000-01-04 -0.285152 0.602373 -0.371809
2000-01-05 -0.334380 0.652507 -0.355130
2000-01-06 -0.383608 0.702642 -0.338451
2000-01-07 -0.432836 0.752777 -0.321772
2000-01-08 -0.482064 0.802912 -0.305093
2000-01-09 -0.531292 0.853047 -0.288414
2000-01-10 -0.146233 1.290812 -0.519207

Applying elementwise Python functions

Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods
applymap() on DataFrame and analogously map() on Series accept any Python function taking a single value and
returning a single value. For example:

In [124]: df
Out[124]:

one three two

52 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

a -1.268951 NaN 1.268233
b -0.260681 0.431861 1.658656
c -0.853457 -0.877516 0.296434
d NaN -0.338294 1.029727

In [125]: df['one'].map(lambda x: len(str(x)))
\\\Out[125]:
a 17
b 19
c 19
d 3
Name: one, dtype: int64

In [126]: df.applymap(lambda x: len(str(x)))
\\Out[126]:

one three two
a 17 3 17
b 19 18 18
c 19 19 17
d 3 20 18

Reindexing and altering labels

reindex() is the fundamental data alignment method in pandas. It is used to implement nearly all other features
relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a
particular axis. This accomplishes several things:

• Reorders the existing data to match a new set of labels

• Inserts missing value (NA) markers in label locations where no data for that label existed

• If specified, fill data for missing labels using logic (highly relevant to working with time series data)

Here is a simple example:

In [127]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [128]: s.reindex(['e', 'b', 'f', 'd'])
Out[128]:
e -1.970569
b 1.275068
f NaN
d -1.093001
dtype: float64

With a DataFrame, you can simultaneously reindex the index and columns:

In [129]: df
Out[129]:

one three two
a -1.268951 NaN 1.268233
b -0.260681 0.431861 1.658656
c -0.853457 -0.877516 0.296434
d NaN -0.338294 1.029727

In [130]: df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
\\\Out[130]:

three two one

4.4. Reindexing and altering labels 53

Data Analysis in Python Documentation, Release 0.1

c -0.877516 0.296434 -0.853457
f NaN NaN NaN
b 0.431861 1.658656 -0.260681

Reindexing to align with another object

You may wish to take an object and reindex its axes to be labeled the same as another object.

In [131]: df.reindex_like(df.ix[:2, 2:])
Out[131]:

two
a 1.268233
b 1.658656

Aligning objects with each other with align

The align() method is the fastest way to simultaneously align two objects. It supports a join argument (related to
joining and merging):

• join=’outer’: take the union of the indexes (default)

• join=’left’: use the calling object’s index

• join=’right’: use the passed object’s index

• join=’inner’: intersect the indexes

It returns a tuple with both of the reindexed Series:

In [132]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [133]: s1 = s[:4]

In [134]: s2 = s[1:]

In [135]: s1.align(s2)
Out[135]:
(a -0.917421
b 1.500971
c 2.170547
d 0.066315
e NaN
dtype: float64, a NaN
b 1.500971
c 2.170547
d 0.066315
e -0.310747
dtype: float64)

In [136]: s1.align(s2, join='inner')
\\Out[136]:
(b 1.500971
c 2.170547
d 0.066315
dtype: float64, b 1.500971
c 2.170547
d 0.066315

54 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

dtype: float64)

In [137]: s1.align(s2, join='left')
\\Out[137]:
(a -0.917421
b 1.500971
c 2.170547
d 0.066315
dtype: float64, a NaN
b 1.500971
c 2.170547
d 0.066315
dtype: float64)

For DataFrames, the join method will be applied to both the index and the columns by default:

In [138]: df = pd.DataFrame({'one' : pd.Series(np.random.randn(3), index=['a', 'b', 'c']),
.....: 'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd']),
.....: 'three' : pd.Series(np.random.randn(3), index=['b', 'c', 'd'])})
.....:

In [139]: df2 = pd.DataFrame({'two' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'e']),
.....: 'three' : pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd'])})
.....:

In [140]:

In [140]: df2
Out[140]:

three two
a 1.213021 -1.528701
b 0.763892 2.782527
c 0.229913 1.103515
d 0.433320 NaN
e NaN -0.596160

In [141]: df.align(df2, join='inner')
\\\Out[141]:
(three two
a NaN 0.353936
b -0.126721 -0.233720
c -1.367344 -0.396185
d -0.665558 0.235321, three two
a 1.213021 -1.528701
b 0.763892 2.782527
c 0.229913 1.103515
d 0.433320 NaN)

You can also pass an axis option to only align on the specified axis:

In [142]: df.align(df2, join='inner', axis=0)
Out[142]:
(one three two
a -1.380342 NaN 0.353936
b -0.710816 -0.126721 -0.233720
c 0.213463 -1.367344 -0.396185
d NaN -0.665558 0.235321, three two
a 1.213021 -1.528701
b 0.763892 2.782527

4.4. Reindexing and altering labels 55

Data Analysis in Python Documentation, Release 0.1

c 0.229913 1.103515
d 0.433320 NaN)

Filling while reindexing

reindex() takes an optional parameter method which is a filling method chosen from the following options:

• pad / ffill: Fill values forward

• bfill / backfill: Fill values backward

• nearest: Fill from the nearest index value

These methods require that the indexes are ordered increasing or decreasing.

We illustrate these fill methods on a simple Series:

In [143]: rng = pd.date_range('1/3/2000', periods=8)

In [144]: ts = pd.Series(np.random.randn(8), index=rng)

In [145]: ts2 = ts[[0, 3, 6]]

In [146]: ts
Out[146]:
2000-01-03 0.276845
2000-01-04 -0.079263
2000-01-05 1.299173
2000-01-06 -1.027178
2000-01-07 -2.024731
2000-01-08 -1.881748
2000-01-09 1.553641
2000-01-10 -0.541811
Freq: D, dtype: float64

In [147]: ts2
\\\Out[147]:
2000-01-03 0.276845
2000-01-06 -1.027178
2000-01-09 1.553641
dtype: float64

In [148]: ts2.reindex(ts.index)
\\Out[148]:
2000-01-03 0.276845
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 -1.027178
2000-01-07 NaN
2000-01-08 NaN
2000-01-09 1.553641
2000-01-10 NaN
Freq: D, dtype: float64

In [149]: ts2.reindex(ts.index, method='ffill')
\\\Out[149]:
2000-01-03 0.276845
2000-01-04 0.276845
2000-01-05 0.276845

56 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

2000-01-06 -1.027178
2000-01-07 -1.027178
2000-01-08 -1.027178
2000-01-09 1.553641
2000-01-10 1.553641
Freq: D, dtype: float64

In [150]: ts2.reindex(ts.index, method='bfill')
\\Out[150]:
2000-01-03 0.276845
2000-01-04 -1.027178
2000-01-05 -1.027178
2000-01-06 -1.027178
2000-01-07 1.553641
2000-01-08 1.553641
2000-01-09 1.553641
2000-01-10 NaN
Freq: D, dtype: float64

In [151]: ts2.reindex(ts.index, method='nearest')
\\\Out[151]:
2000-01-03 0.276845
2000-01-04 0.276845
2000-01-05 -1.027178
2000-01-06 -1.027178
2000-01-07 -1.027178
2000-01-08 1.553641
2000-01-09 1.553641
2000-01-10 1.553641
Freq: D, dtype: float64

Dropping labels from an axis

A method closely related to reindex is the drop() function. It removes a set of labels from an axis:

In [152]: df
Out[152]:

one three two
a -1.380342 NaN 0.353936
b -0.710816 -0.126721 -0.233720
c 0.213463 -1.367344 -0.396185
d NaN -0.665558 0.235321

In [153]: df.drop(['a', 'd'], axis=0)
\\\Out[153]:

one three two
b -0.710816 -0.126721 -0.233720
c 0.213463 -1.367344 -0.396185

In [154]: df.drop(['one'], axis=1)
\\Out[154]:

three two
a NaN 0.353936
b -0.126721 -0.233720
c -1.367344 -0.396185
d -0.665558 0.235321

4.4. Reindexing and altering labels 57

Data Analysis in Python Documentation, Release 0.1

Renaming / mapping labels

The rename()method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.

In [155]: s
Out[155]:
a -0.917421
b 1.500971
c 2.170547
d 0.066315
e -0.310747
dtype: float64

In [156]: s.rename(str.upper)
\\Out[156]:
A -0.917421
B 1.500971
C 2.170547
D 0.066315
E -0.310747
dtype: float64

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique
values). But if you pass a dict or Series, it need only contain a subset of the labels as keys:

In [157]: df.rename(columns={'one' : 'foo', 'two' : 'bar'},
.....: index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'})
.....:

Out[157]:
foo three bar

apple -1.380342 NaN 0.353936
banana -0.710816 -0.126721 -0.233720
c 0.213463 -1.367344 -0.396185
durian NaN -0.665558 0.235321

The rename() method also provides an inplace named parameter that is by default False and copies the underly-
ing data. Pass inplace=True to rename the data in place.

Sorting by index and value

There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values.
The primary method for sorting axis labels (indexes) across data structures is the sort_index() method.

In [158]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
.....: columns=['three', 'two', 'one'])
.....:

In [159]: unsorted_df.sort_index()
Out[159]:

three two one
a NaN 0.353936 -1.380342
b -0.126721 -0.233720 -0.710816
c -1.367344 -0.396185 0.213463
d -0.665558 0.235321 NaN

In [160]: unsorted_df.sort_index(ascending=False)
\\\Out[160]:

58 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

three two one
d -0.665558 0.235321 NaN
c -1.367344 -0.396185 0.213463
b -0.126721 -0.233720 -0.710816
a NaN 0.353936 -1.380342

In [161]: unsorted_df.sort_index(axis=1)
\\Out[161]:

one three two
a -1.380342 NaN 0.353936
d NaN -0.665558 0.235321
c 0.213463 -1.367344 -0.396185
b -0.710816 -0.126721 -0.233720

DataFrame.sort_index() can accept an optional by argument for axis=0 which will use an arbitrary vector
or a column name of the DataFrame to determine the sort order:

In [162]: df1 = pd.DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]})

In [163]: df1.sort_index(by='two')
Out[163]:

one three two
0 2 5 1
2 1 3 2
1 1 4 3
3 1 2 4

The by argument can take a list of column names, e.g.:

In [164]: df1[['one', 'two', 'three']].sort_index(by=['one','two'])
Out[164]:

one two three
2 1 2 3
1 1 3 4
3 1 4 2
0 2 1 5

Smallest / largest values

Series has the nsmallest() and nlargest() methods which return the smallest or largest n values. For a large
Series this can be much faster than sorting the entire Series and calling head(n) on the result.

In [165]: s = pd.Series(np.random.permutation(10))

In [166]: s
Out[166]:
0 0
1 9
2 5
3 3
4 8
5 7
6 2
7 1
8 6
9 4
dtype: int64

4.5. Sorting by index and value 59

Data Analysis in Python Documentation, Release 0.1

In [167]: s.order()
\\Out[167]:
0 0
7 1
6 2
3 3
9 4
2 5
8 6
5 7
4 8
1 9
dtype: int64

In [168]: s.nsmallest(3)
\\Out[168]:
0 0
7 1
6 2
dtype: int64

In [169]: s.nlargest(3)
\\\Out[169]:
1 9
4 8
5 7
dtype: int64

Sorting by a multi-index column

You must be explicit about sorting when the column is a multi-index, and fully specify all levels to by.

In [170]: df1.columns = pd.MultiIndex.from_tuples([('a','one'),('a','two'),('b','three')])

In [171]: df1.sort_index(by=('a','two'))
Out[171]:

a b
one two three

3 1 2 4
2 1 3 2
1 1 4 3
0 2 5 1

Indexing and selecting data

Different Choices for Indexing

Pandas supports three types of multi-axis indexing.

• .loc is primarily label based, but may also be used with a boolean array. .loc will raise
KeyError when the items are not found. Allowed inputs are:

– A single label, e.g. 5 or ’a’, (note that 5 is interpreted as a label of the index. This use is not
an integer position along the index)

60 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

– A list or array of labels [’a’, ’b’, ’c’]

– A slice object with labels ’a’:’f’, (note that contrary to usual python slices, both the start
and the stop are included!)

– A boolean array

• .iloc is primarily integer position based (from 0 to length-1 of the axis), but may also be
used with a boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds,
except slice indexers which allow out-of-bounds indexing. Allowed inputs are:

– An integer e.g. 5

– A list or array of integers [4, 3, 0]

– A slice object with ints 1:7

– A boolean array

• .ix supports mixed integer and label based access. It is primarily label based, but will fall back to
integer positional access unless the corresponding axis is of integer type. .ix is the most general and
will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes.
.ix is exceptionally useful when dealing with mixed positional and label based hierachical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported.
Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

Selection By Position

A few basic examples:

In [172]: s1 = pd.Series(np.random.randn(5),index=list(range(0,10,2)))

In [173]: s1
Out[173]:
0 2.084884
2 -0.124936
4 -0.432126
6 -0.204394
8 -0.298929
dtype: float64

In [174]: s1.iloc[:3]
\\Out[174]:
0 2.084884
2 -0.124936
4 -0.432126
dtype: float64

In [175]: s1.iloc[3]
\\Out[175]: -0.20439439915620208

In [176]: s1.iloc[:3] = 0

In [177]: s1
Out[177]:
0 0.000000
2 0.000000
4 0.000000
6 -0.204394

4.6. Indexing and selecting data 61

Data Analysis in Python Documentation, Release 0.1

8 -0.298929
dtype: float64

With a DataFrame:

In [178]: df1 = pd.DataFrame(np.random.randn(6,4),
.....: index=list(range(0,12,2)),
.....: columns=list(range(0,8,2)))
.....:

In [179]: df1
Out[179]:

0 2 4 6
0 -0.727100 1.097008 0.322402 -0.373036
2 -0.346949 -0.918235 1.271646 -0.097125
4 0.354153 -0.150776 0.517917 0.838237
6 1.415195 0.218133 0.604036 -0.536193
8 -1.146182 -0.437254 -1.297848 0.835153
10 1.299792 -0.579843 -1.740963 -0.065243

In [180]: df1.iloc[:3]
\\Out[180]:

0 2 4 6
0 -0.727100 1.097008 0.322402 -0.373036
2 -0.346949 -0.918235 1.271646 -0.097125
4 0.354153 -0.150776 0.517917 0.838237

In [181]: df1.iloc[1:5, 2:4]
\\\Out[181]:

4 6
2 1.271646 -0.097125
4 0.517917 0.838237
6 0.604036 -0.536193
8 -1.297848 0.835153

In [182]: df1.iloc[[1, 3, 5], [1, 3]]
\\Out[182]:

2 6
2 -0.918235 -0.097125
6 0.218133 -0.536193
10 -0.579843 -0.065243

In [183]: df1.iloc[1:3, :]
\\\Out[183]:

0 2 4 6
2 -0.346949 -0.918235 1.271646 -0.097125
4 0.354153 -0.150776 0.517917 0.838237

In [184]: df1.iloc[:, 1:3]
\\Out[184]:

2 4
0 1.097008 0.322402
2 -0.918235 1.271646
4 -0.150776 0.517917
6 0.218133 0.604036
8 -0.437254 -1.297848
10 -0.579843 -1.740963

62 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

In [185]: df1.iloc[1, 1]
\\Out[185]: -0.91823482468131823

In [186]: df1.iloc[1]
\\\Out[186]:
0 -0.346949
2 -0.918235
4 1.271646
6 -0.097125
Name: 2, dtype: float64

Boolean indexing

Another common operation is the use of boolean vectors to filter the data. The operators are: | for or, & for and, and
~ for not. These must be grouped by using parentheses.

Using a boolean vector to index a Series works exactly as in a numpy ndarray:

In [187]: s = pd.Series(range(-3, 4))

In [188]: s
Out[188]:
0 -3
1 -2
2 -1
3 0
4 1
5 2
6 3
dtype: int64

In [189]: s[s > 0]
\\\Out[189]:
4 1
5 2
6 3
dtype: int64

In [190]: s[(s < -1) | (s > 0.5)]
\\Out[190]:
0 -3
1 -2
4 1
5 2
6 3
dtype: int64

In [191]: s[~(s < 0)]
\\\Out[191]:
3 0
4 1
5 2
6 3
dtype: int64

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example,
something derived from one of the columns of the DataFrame):

4.6. Indexing and selecting data 63

Data Analysis in Python Documentation, Release 0.1

In [192]: df = pd.DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
.....: 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
.....: 'c' : np.random.randn(7)})
.....:

In [193]: df
Out[193]:

a b c
0 one x -1.667398
1 one y -0.839763
2 two y -0.431709
3 three x 0.674604
4 two y -0.017719
5 one x 0.640781
6 six x -1.659088

In [194]: df[df['c'] > 0]
\\\Out[194]:

a b c
3 three x 0.674604
5 one x 0.640781

In [195]: criterion = df['a'].map(lambda x: x.startswith('t'))

In [196]: df[criterion]
Out[196]:

a b c
2 two y -0.431709
3 three x 0.674604
4 two y -0.017719

In [197]: df[criterion & (df['b'] == 'x')]
\\\Out[197]:

a b c
3 three x 0.674604

In [198]: df.loc[criterion & (df['b'] == 'x'), 'b':'c']
\\Out[198]:

b c
3 x 0.674604

Indexing with isin

Consider the isin method of Series, which returns a boolean vector that is true wherever the Series elements exist in
the passed list. This allows you to select rows where one or more columns have values you want:

In [199]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1])

In [200]: s
Out[200]:
4 0
3 1
2 2
1 3
0 4
dtype: int64

64 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

In [201]: s.isin([2, 4, 6])
\\\Out[201]:
4 False
3 False
2 True
1 False
0 True
dtype: bool

In [202]: s[s.isin([2, 4, 6])]
\\\Out[202]:
2 2
0 4
dtype: int64

The same method is available for Index objects and is useful for the cases when you don’t know which of the sought
labels are in fact present:

In [203]: s[s.index.isin([2, 4, 6])]
Out[203]:
4 0
2 2
dtype: int64

In [204]: s[[2, 4, 6]]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[204]:
2 2.0
4 0.0
6 NaN
dtype: float64

In addition to that, MultiIndex allows selecting a separate level to use in the membership check:

In [205]: s_mi = pd.Series(np.arange(6),
.....: index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))
.....:

In [206]: s_mi
Out[206]:
0 a 0

b 1
c 2

1 a 3
b 4
c 5

dtype: int64

In [207]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
\\Out[207]:
0 c 2
1 a 3
dtype: int64

In [208]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
\\Out[208]:
0 a 0

c 2
1 a 3

c 5

4.6. Indexing and selecting data 65

Data Analysis in Python Documentation, Release 0.1

dtype: int64

DataFrame also has an isin method. When calling isin, pass a set of values as either an array or dict. If values is
an array, isin returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever
the element is in the sequence of values.

In [209]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
.....: 'ids2': ['a', 'n', 'c', 'n']})
.....:

In [210]: df
Out[210]:

ids ids2 vals
0 a a 1
1 b n 2
2 f c 3
3 n n 4

In [211]: df.isin(['a', 'b', 1, 3])
\\Out[211]:

ids ids2 vals
0 True True True
1 True False False
2 False False True
3 False False False

In [212]: df.isin({'ids': ['a', 'b'], 'vals': [1, 3]})
\\Out[212]:

ids ids2 vals
0 True False True
1 True False False
2 False False True
3 False False False

Set / Reset Index

DataFrame has a set_index method which takes a column name (for a regular Index) or a list of column names
(for a MultiIndex), to create a new, indexed DataFrame:

In [213]: data = pd.DataFrame({'a' : ['bar', 'bar', 'foo', 'foo'],
.....: 'b' : ['one', 'two', 'one', 'two'],
.....: 'c' : ['z', 'y', 'x', 'w'],
.....: 'd' : range(1, 5)})
.....:

In [214]: data
Out[214]:

a b c d
0 bar one z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4

In [215]: data.set_index('c')
\\\Out[215]:

a b d
c

66 Chapter 4. Pandas. Data processing

Data Analysis in Python Documentation, Release 0.1

z bar one 1
y bar two 2
x foo one 3
w foo two 4

In [216]: data.set_index(['a', 'b'])
\\Out[216]:

c d
a b
bar one z 1

two y 2
foo one x 3

two w 4

In [217]: data.set_index(['a', 'b'], inplace=True)

reset_index is the inverse operation to set_index.

In [218]: data.reset_index()
Out[218]:

a b c d
0 bar one z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4

In [219]: data.reset_index(level='a')
\\\Out[219]:

a c d
b
one bar z 1
two bar y 2
one foo x 3
two foo w 4

Todo

Complete Pandas section

4.6. Indexing and selecting data 67

Data Analysis in Python Documentation, Release 0.1

68 Chapter 4. Pandas. Data processing

CHAPTER 5

Data I/O

Source: http://pandas.pydata.org/pandas-docs/stable/io.html

Todo

Write Data I/O section

Data import

From CSV

From Excel

From Stata

From MatLab

From Web

Yahoo! Finance

Google Finance

FRED

Fama/French

World Bank

Google Analytics

Quandl

69

http://pandas.pydata.org/pandas-docs/stable/io.html

Data Analysis in Python Documentation, Release 0.1

From html

From unstructured files

Data export

To HDF

To CSV

To Excel

To Stata

70 Chapter 5. Data I/O

CHAPTER 6

Data crunching examples

• IMF Financial Reforms

• Electricity generation in the US

• Online news popularity

• Stock prices and returns

• Movie ratings

71

https://github.com/khrapovs/dataanalysispython/blob/master/lectures/fin_reform.ipynb
https://github.com/khrapovs/dataanalysispython/blob/master/lectures/electricity.ipynb
https://github.com/khrapovs/dataanalysispython/blob/master/lectures/news_popularity.ipynb
https://github.com/khrapovs/dataanalysispython/blob/master/lectures/stocks.ipynb
https://github.com/khrapovs/dataanalysispython/blob/master/lectures/movie_ratings.ipynb

Data Analysis in Python Documentation, Release 0.1

72 Chapter 6. Data crunching examples

CHAPTER 7

Data visualization

Todo

Write Data visualization section

Matplotlib

• A few examples

Seaborn

Bokeh

Plotly

73

https://github.com/khrapovs/dataanalysispython/blob/master/lectures/matplotlib.ipynb

Data Analysis in Python Documentation, Release 0.1

74 Chapter 7. Data visualization

CHAPTER 8

What’s missing

Todo

Write Data I/O section

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dataanalysispython/checkouts/latest/notes/dataio.rst,
line 7.)

Todo

Complete Pandas section

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dataanalysispython/checkouts/latest/notes/pandas.rst,
line 1841.)

Todo

Write Data visualization section

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dataanalysispython/checkouts/latest/notes/visualization.rst,
line 5.)

75

	Introduction
	Resources
	Why Python?
	How to start using Python
	Essential libraries
	Data sources

	Python basics
	Your first program
	Native Data Types
	Indexing
	Control flow
	Functions
	Classes
	Modules and Packages
	Documenenting your code

	NumPy. Manipulations with numerical data
	Array creation
	Indexing, Slicing
	Copies and Views
	Array manipulations
	Reductions

	Pandas. Data processing
	Data structures
	Basic functionality
	Function application
	Reindexing and altering labels
	Sorting by index and value
	Indexing and selecting data

	Data I/O
	Data import
	Data export

	Data crunching examples
	Data visualization
	Matplotlib
	Seaborn
	Bokeh
	Plotly

	What's missing

